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ABSTRACT

In this paper, an ontology infrastucture for multimedia rea-
soning is presented, making it possible to combine low-level
visual descriptors with domain specific knowledge and sub-
sequently analyze multimedia content with a generic algo-
rithm that makes use of this knowledge. More specifically,
the ontology infrastructure consists of a domain-specific on-
tology, a visual descriptor ontology (VDO) and an upper
ontology. In order to interpret a scene, a set of atom regions
is generated by an initial segmentation and their descrip-
tors are extracted. Considering all descriptors in association
with the related prototype instances and relations, a genetic
algorithm labels the atom regions. Finally, a constraint rea-
soning engine enables the final region merging and labelling
into meaningful objects.

1. INTRODUCTION

Recently, there is a growing research interest in the extrac-
tion of high-level semantic concepts from images and video
using low-level multimedia features and domain knowledge.
Significant progress has been made on automatic segmen-
tation or structuring of multimedia content and the extrac-
tion of low-level features within such content [1]. However,
comparatively little progress has been made on interpreta-
tion and generation of semantic descriptions of visual infor-
mation. More importantly, most analysis techniques focus
on specific application domains, making it hard to general-
ize in case other domains need to handled.

Due to the limitations of the state of the art multime-
dia analysis systems [2], it is acknowledged that in order to
achieve semantic analysis of multimedia content, ontologies
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[3] are essential to express semantics in a formal machine-
processable representation. Ontology-based metadata cre-
ation currently addresses mainly textual resources or simple
annotation of photographs [4]. In well-structured applica-
tions (e.g. sports and news broadcasting) domain-specific
features that facilitate the modelling of higher level seman-
tics can be extracted [5]. A priori knowledge representation
models are also used to assist semantic-based classification
and clustering [6]. However, most such techniques are ei-
ther not suitable for multimedia content analysis, or too cor-
related with the specific domains they are designed for.

In [7] a novel framework for video content understand-
ing that uses rules constructed from knowledge bases and
multimedia ontologies is presented. In [8], multimedia on-
tologies are semi-automatically constructed using a data-
driven approach. [9] presents automatic techniques for ex-
tracting semantic concepts and discovering semantic rela-
tions among them and evaluates several techniques for vi-
sual feature descriptors extraction. In [10], semantic en-
tities, in the context of the MPEG-7 standard, are used for
knowledge-assisted video analysis and object detection, while
in [11] MPEG-7 compliant low-level descriptors are mapped
to intermediate-level descriptors forming an object ontol-
ogy. It is evident from all such approaches, that a generic
multimedia content analysis framework is required that makes
use of knowledge stored in multimedia-enabled ontologies.

The framework presented in this paper combines low-
level visual descriptors and domain-specific knowledge rep-
resented in an ontology infrastructure with a generic anal-
ysis scheme to semantically interpret and annotate multi-
media content. The infrastructure consists of (i) a domain-
specific ontology that provides the necessary conceptualiza-
tions for the specific domain, (ii) multimedia ontologies that
model the multimedia layer data in terms of low level fea-
tures and media structure descriptors, and (iii) a core on-



tology (DOLCE) that bridges the previous ontologies in a
single architecture. During image/video analysis, a set of
atom-regions is generated by an initial segmentation, and
MPEG-7 visual descriptors are extracted for each region.
A distance measure between these descriptors and the ones
of the prototype instances included in the domain ontology
is estimated using a neural network approach. A genetic
algorithm then decides the initial labelling of the atom re-
gions with a set of hypotheses, where each hypothesis rep-
resents a class from the domain ontology. Finally, a con-
straint reasoning engine enables the final merging of the re-
gions, while at the same time reducing the number of hy-
potheses. This approach is generic and applicable to any
domain as long as new domain ontologies are designed and
made available.

The remainder of the paper is structured as follows: sec-
tion 2 describes the ontology infrastructure. Section 3 de-
scribes the Genetic Algorithm approach, while section 4
describes the proposed reasoning engine. Results are pre-
sented in section 5 and conclusions are drawn in section 7.

2. ONTOLOGY INFRASTRUCTURE

There are two main factors that breed the need for a knowl-
edge infrastructure for multimedia analysis. Firstly the fact
that reasoners have to deal with large numbers of instantia-
tions of the concepts an properties defined in ontologies, in
cases of reasoning with multimedia data on large scale, and
secondly that multimedia data comes in two separate though
intertwined layers, multimedia and content layer. The mul-
timedia layer deals with the semantics of properties related
to the representation of content within the media data itself
while on the other hand the content layer deals with the se-
mantics of the actual content contained in the media data as
it is perceived by the human media consumer.

Hence the knowledge infrastructure should model the
multimedia layer data so as to support extraction and infer-
encing of content layer data. The ontology infrastructure
used integrates these two layers consisting of:

• Multimedia ontologiesthat model the multimedia layer
data in terms of low level features and media struc-
ture descriptors, namely theVisual Descriptors On-
tology (VDO), based on an RDF representation of
the MPEG-7 Visual Descriptors, and theMultime-
dia Structure Ontology(MSO), based on the MPEG-7
MDS.

• Domain Ontologiesthat provide the necessary con-
ceptualizations of the content layer, for a specific ap-
plication domain.

• A Core Ontologythat models primitives at the root
of the concept hierarchy and can be exploited by both

types of ontologies. It is also meant to bridge between
the other ontologies within the architecture.

The knowledge infrastructure is set up using RDFS. This
approach is expected to be complemented by using an ap-
propriate sub-language of OWL at a later stage. This deci-
sion reflects that a full usage of the increased expressiveness
of OWL requires specialized and more advanced inference
engines, especially when dealing with large numbers of in-
stances.

The Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) was explicitly designed as core on-
tology. The RDFS version of DOLCE currently contains
about 79 high level concepts and 81 high level properties
among them. DOLCE contains explicit conceptualizations
by including the concept of qualities that can be perceived,
as well as spatio-temporal concept descriptions. However,
reasoning with spatio-temporal descriptions requires the cod-
ing of additional relations that describe the relationship be-
tween space and/or time regions. Based on concepts taken
from Region Connecting Calculus, Allen’s interval calculus
and directional models, we have carefully extended DOLCE
to accomodate the corresponding directional and topologi-
cal relationships in the spatial and temporal domains.

The top-level multimedia content entities of the MSO
are described in MPEG-7 Multimedia Description Schemes
(MDS) FCD. Within MPEG-7, multimedia content is clas-
sified into five types: Image, Video, Audio, Audiovisual and
Multimedia. Each of these types has its own segment sub-
classes. The Segment DS describes a spatial and/or tem-
poral fragment of multimedia content. A number of spe-
cialized subclasses are derived from the generic Segment
DS. These subclasses describe the specific types of multi-
media segments, such as video segments, moving regions,
still regions and mosaics, which result from spatial, tempo-
ral and spatiotemporal segmentation of the different mul-
timedia content types. Multimedia resources can then be
accordingly decomposed into sub-segments through spatial,
temporal, spatiotemporal or media source decomposition.

The VDO contains a set of visual descriptors to be used
for knowledge-assisted analysis of multimedia content. By
the term descriptor we mean a specific representation of
a visual feature (color, shape, texture etc) that defines the
syntax and the semantics of a specific aspect of the feature
(dominant color, region shape etc). The entire VDO fol-
lows closely the specification of the MPEG-7 Visual Part,
but several modifications were carried out in order to adapt
to the datatype representations available in RDFS.

In order to extract a set of prototype low-level visual de-
scriptors for different domain concepts and integrate them
into the ontology structure, it must be clear how domain
concepts can be linked with actual instance data without
having to cope with meta-modelling. For this purpose, we
have enriched the knowledge base with instances of domain



concepts that serve asprototypesfor these concepts. Each
of these is linked to the appropriate visual descriptor in-
stances.

3. KNOWLEDGE-ASSISTED ANALYSIS

The domain ontology represents the required knowledge for
interpreting each image or video scene, which is a mapping
of image regions to the corresponding domain-specific se-
mantic definition. Classes within the ontology have been
defined to represent the different types of visual informa-
tion while subclasses represent the different ways to cal-
culate a visual feature. Each real-world object is allowed
to have more than one instantiations. Currently, three spa-
tial relations and three low-level descriptors are supported.
These descriptors are: adjacency(ADJ), below (BEW ),
and inclusion(INC) relations, and dominant color(DC),
motion (MOV ) and compactness(CPS) descriptors. En-
riching the ontology with domain specific knowledge results
in populating it with appropriate instances, i.e. prototypes
for the objects to be detected.

During preprocessing, color segmentation [12][1]) and
motion segmentation [13][11]) are combined to generate a
set of over-segmented atom-regions. The extraction of the
low-level descriptors for each atom-region is performed us-
ing the MPEG-7 eXperimentation Model(XM) [1]. Motion
estimation is based on block motion vector estimation using
block matching and the calculation of the norm of the av-
eraged global-motion-compensated motion vectors for the
blocks belonging to each region. Global motion compensa-
tion is based on estimating the8 parameters of the bilinear
motion model for camera motion, using an iterative rejec-
tion procedure [14]. Finally, the compactness descriptor is
calculated by the area and the perimeter of the region.

After preprocessing, assuming for a single imageNR

atom regions and a domain ontology ofNO objects, there
are NNO

R possible scene interpretations. A genetic algo-
rithm is used to overcome the computational time constraints
of testing all possible configurations [15]. In this approach,
each individual represents a possible interpretation of the
examined scene, i.e the identification of all atom regions.
In order to reduce the search space, the initial population
is generated by allowing each gene to associate the corre-
sponding atom-region only with those objects that the par-
ticular atom-region is most likely to represent.

The degree of matching between regions, in terms of
low-level visual and spatial features respectively, is defined
as:

• the interpretation functionIM (gi) ≡ IM (Ri, omj),
assuming thatgi associates regionRi with objectoj

having modelomj , to provide an estimation of the de-
gree of matching between an object modelomj and

a regionRi. IM (Ri, omj) is calculated using the de-
scriptor distance functions realized in the MPEG-7
XM and is subsequently normalized so thatIM (Ri, omj)
belongs to[0, 1].

• the interpretation functionIR, which provides an es-
timation of the degree to which a relationR holds
between two atom-regions.

The employed fitness function that considers the above
matching estimations for all atom-regions is defined as:

Fitness(G) =
∑
gi

IM (gi) +
∑

k

∑

(gi,gj)

IRk
(gi, gj)

whereIM (gi) is the estimation function of genegi regard-
ing low-level visual similarity andIRk

(gi, gj) is the estima-
tion function of spatial similarity betweengi andgj in terms
ofRk. It follows from the above definitions that the optimal
solution is the one that maximizes the fitness function. Any
neighboring regions belonging to the same object according
to the generated optimal solution are simply merged. For
each object that fails to comply the concept of unknown ob-
ject is introduced.

Our approach to implement the interpretation function
IM used for the fitness function is based on a back-propagation
neural network. When the task is to compare two regions
based on a single descriptor, several distance functions can
be used; however, there is not a single one to include all
descriptors with different weight on each. This is a prob-
lem that the neural network handles. Its input consists of
the low-level descriptions of both of an atom region and an
object model, while its response is the estimated normal-
ized distance between the atom region and the model. A
training set is constructed using the descriptors of a set of
manually labelled atom regions and the descriptors of the
corresponding object models. The network is trained un-
der the assumption that the distance of an atom region that
belongs to the training set is minimum for the associated ob-
ject and maximum for all others. This distance is then used
for the interpretation functionIM .

4. CONSTRAINT REASONING ENGINE

The analysis procedure described in section 3 results in an
image segmented into a number of atom regions, each la-
beled with an initial set of hypotheses. Each hypothesis
corresponds to one object description defined in the domain
ontology. Although at this stage the atom-regions bear se-
mantic information, further processing is required to derive
a segmentation where each segment represents a meaning-
ful object. To accomplish this, the limitations posed by the
numerically based segmentation algorithms need to be over-
come, i.e. atom-regions corresponding to only part instead



of the complete object, loss of object connectivity etc. In
the following we describe an approach to meet this require-
ments based on reasoning on the labels and spatiotemporal
information of the considered atom-regions.

The input of the proposed reasoning system consists of
the set of atom-regions along with their initial labels as re-
sulted following the former analysis procedure. The corre-
sponding output is a reduced number of atom-regions, which
coincide with real objects, within a plausible degree of accu-
racy, and a reduced set of hypotheses for each atom-region.
The reasoning process is based on the extracted labels and
spatiotemporal features of the examined atom-regions in as-
sociation with the information included in the domain ontol-
ogy.

The integration of low-level features in the reasoning
process further improves the plausibility of the detection re-
sults. For example, a merging indicated by the defined rules
should be performed only if the shape of the resulting seg-
ment conforms to the shape of one of the plausible object
classes corresponding to the merged atom-regions. Obvi-
ously, this raises the need for incorporation of low-level fea-
ture matching into the reasoning system, which on the one
hand can lead to computational problems and on the other
hand reduces the number of eligible reasoning systems, be-
cause means to extend the system must be available.

Fig. 1. Input image.

This can be better understood through the example of
Fig. 1, which is initially segmented and labelled as illus-
trated in Fig. 2. Regions labelled as ‘sky’, ‘field’ and ‘moun-
tain’ are expected to be merged. Furthermore, more com-
plex regions such as ‘roof’ and ‘wall’ are evaluated in as-
sociation with each other. In other words, since a region
has bright red color and geometrically fits to the description
given for a roof it may be labelled as ‘roof’. On the other
hand, a white rectangle is difficult to be assigned a label
alone, due to its very general features appearing in a num-

ber of prototype instances; however, according to available
spatiotemporal information (white rectangle below roof) the
‘wall’ label is assigned to it.

Fig. 2. Image after initial segmentation and labelling.

The whole process is iterative, as the actual region merg-
ing cannot be implemented efficiently within a reasoning
system. Thus, the reasoner identifies regions that are to
be merged, by adding a relation between them. Such rela-
tions are interpreted within a second step, where regions are
merged, and any associated visual descriptors and relations
are updated. New region labels are estimated, and hypothe-
ses are then constructed. The output of this analysis step
again serves as input for the reasoner in an iterative fashion
until a stable state is reached, i.e. no new information can
be inferred.

Fig. 3. Output of the constraint reasoner.

Using this approach, objects with similar visual charac-
teristics can be discriminated in terms of their spatiotem-
poral behavior and the visual context on which they occur.



Furthermore, based on the output of the described reason-
ing process, further analysis becomes feasible, aiming at the
generation of higher-level semantics, such as recognition of
complex objects or events, which cannot be represented in
terms of their visual features. In our example this is shown
at Fig. 3. The ‘sky’, ‘field’ and ‘mountain’ regions have
been merged but also regions ‘wall’ and ‘roof’ have been
merged with the label ‘house’ assigned to the resulting re-
gion.

5. RESULTS

The presented ontology-based framework was used to ex-
tract semantic descriptions of a variety of MPEG-2 videos
of the Formula One and Tennis domains. The correspond-
ing domain ontologies, i.e the defined object classes along
with their low-level features and spatial interrelations are
illustrated in Table 1. A training set of manually annotated
videos was used to populate the domain ontologies with pro-
totype instances.

Object Class Low-level descriptors Spatial relations
Road DC1

road ∨DC2
road ∨DC3

road RoadADJ Grass,Sand
Car MOV 1

car ∧ CPS1
car CarINC Road

Sand DC1
sand ∨DC2

sand SandADJ Grass, Road
Grass DC1

grass ∨DC2
grass ∨DC3

grass GrassADJ Road,Sand
Field DC1

field ∨DC2
field ∨DC3

field FieldADJ Wall
Player MOV 1

P layer PlayerINC Field
Line DC1

line ∧ CPS1
line Line INC Field

Ball DC1
Ball ∧ CPS1

Ball Ball INC Field
Wall DC1

W all ∨DC2
W all ∨DC2

W all Wall ADJ Field

Table 1. Formula One and Tennis domain definitions.

As illustrated in Fig. 4 and 5, the system output is a seg-
mentation mask outlining the semantic description of the
scene where different colors representing the object classes
defined in the domain ontology are assigned to the gener-
ated atom-regions.

Excluding the process of motion information extraction,
the required analysis time was between 5 and 10 seconds
per frame. The use of spatial information captures part of
the visual context, consequently resulting in the extraction
of more meaningful descriptions provided that the initial
color-based segmentation did not segment two objects as
one atom-region.

6. CONCLUSION

In this paper an approach is described that combines mul-
timedia domain knowledge, a knowledge-assisted analysis
and a constraint reasoner in order to extract high-level se-
mantic knowledge from images and video. The developed
ontology infrastructure efficiently relates domain knowledge
with the semantics of the visual part of MPEG-7 through an
upper harmonizing ontology. After a preprocessing step, a
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Fig. 4. Formula One domain results.

genetic algorithm generates a set of region label hypotheses,
which are then processed by a constraint reasoning engine
in an iterative fashion to enable the final region merging and
labelling. The entire approach is generic, in the sense that
all domain-specific information solely resides in the domain
ontology; the same analysis framework has been tested on
two different domains simply by switching the associated
domain ontology, with promising initial results. This re-
search is ongoing and future work includes implementation
of larger scale domain ontologies enhanced with multime-
dia descriptions, relations and rules to evaluate the proposed
methodology on a large set of multimedia content.
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